otázka |
odpověď |
1. Ze zdania A wynika w języku J zdanie B. Zdanie A jest prawdziwe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania B? Uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika w języku J zdanie B, to implikacja A implikuje B (AB) jest tezą tego języka. jako teza implikacja ta jest więc w danym języku zdaniem prawdziwym. Gdy nadto prawdziwy jest jej poprzednik, czyli zdanie A, to na podstawie modus ponendo ponens przesądza to o prawdziwości następnika tej implikacji, czyli zdania B. Reasumując, w tym przypadku zdanie B okazuje się prawdziwe.
|
|
|
2. Ze zdania A wynika w języku J zdanie B. zdanie A jest fałszywe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania B? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika w języku J zdanie B, to implikacja A implikuje B (AB) jest tezą tego języka. Jako teza implikacja ta jest więc w danym języku zdaniem prawdziwym. Gdy przy tym fałszywy jest jej poprzednik, czyli zdanie A, to na podstawie matrycy spójnika implikacji prawdziwość tej implikacji jest zagwarantowana zarówno wtedy, gdy jej następnik, czyli zdanie B, jest zdaniem prawdziwym, jak i wtedy, gdy zdanie to jest fałszywe. Reasumując, w tym przypadku można powiedzieć tylko tyle, że z
|
|
|
3. Ze zdania A wynika w języku J zdanie B. zdanie B jest prawdziwe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania A? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika w języku J zdanie B, to implikacja A implikuje B (AB) jest tezą tego języka. Jako teza implikacja ta jest więc w danym języku zdaniem prawdziwym. Gdy nadto prawdziwy jest jej następnik, czyli zdanie B, to na podstawie matrycy spójnika implikacji prawdziwość tej implikacji jest zagwarantowana zarówno wtedy, gdy jej poprzednik, czyli zdanie A, jest zdaniem prawdziwym jak i wtedy, gdy jest to zdanie fałszywe. Reasumując, w tym przypadku można powiedzieć tylko tyle, że zdan
|
|
|
4. Ze zdania A wynika w języku J zdanie B. Zdanie B jest fałszywe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania A? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika w języku J zdanie B to implikacja A implikuje B (AB) jest tezą tego języka. Jako teza implikacja ta jest więc w danym języku zdaniem prawdziwym. Gdy przy tym fałszywy jest jej następnik, czyli zdanie B, to na podstawie modus tollendo tollens przesądza to o fałszywości poprzednika tej Implikacji czyli zdania A. Reasumując, w tym przypadku zdanie A okazuje się fałszywe.
|
|
|
5. Ze zdania A wynika logicznie zdanie B. Zdanie A jest prawdziwe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania B? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika logicznie zdanie B to implikacja A implikuje B (AB) jest tautologią. Jako tautologia implikacja ta jest więc zdaniem prawdziwym. Gdy nadto prawdziwy jest jej poprzednik, czyli zdanie A to na podstawie modus ponendo ponens przesądza to o prawdziwości następnika tej implikacji, czyli zdania B. Reasumując, w tym przypadku zdanie B okazuje się prawdziwe.
|
|
|
6. Ze zdania A wynika logicznie zdanie B. zdanie A jest fałszywe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania B? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika logicznie zdanie B, to implikacja A implikuje B (AB) jest tautologią. Jako tautologia implikacja ta jest więc zdaniem prawdziwym. Gdy przy tym fałszywy jest jej poprzednik, czyli zdanie A, to na podstawie matrycy spójnika implikacji prawdziwość tej implikacji jest zagwarantowana zarówno wtedy, gdy jej następnik, czyli zdanie B, jest zdaniem prawdziwym, jak i wtedy, gdy zdanie to jest zdaniem fałszywym. Reasumując, w tym przypadku można powiedzieć tylko tyle, że zdanie B
|
|
|
7. Ze zdania A wynika logicznie zdanie B. Zdanie B jest prawdziwe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania A? uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika logicznie zdanie B, to implikacja A implikuje B (AB) jest tautologią. Jako tautologią implikacja ta jest więc zdaniem prawdziwym. Gdy nadto prawdziwy jest jej następnik, czyli zdanie B, to na podstawie matrycy spójnika implikacji prawdziwość tej implikacji jest zagwarantowana zarówno wtedy, gdy jej poprzednik, czyli zdanie A, jest zdaniem prawdziwym, jak i wtedy, gdy zdanie to jest fałszywe. Reasumując, w tym przypadku można powiedzieć tylko tyle, że zdanie A jest prawd
|
|
|
8. Ze zdania A wynika logicznie zdanie B. Zdanie B jest fałszywe. Co, na tej podstawie, można powiedzieć o wartości logicznej zdania A. uzasadnij swoją odpowiedź. začněte se učit
|
|
Skoro ze zdania A wynika logicznie zdanie B, to implikacja A implikuje B (AB) jest tautologią. Gdy przy tym fałszywy jest jej następnik, czyli zdanie B, to na podstawie modus tollendo tollens przesądza to o fałszywości poprzednika tej implikacji, czyli zdania A. Reasumując, w tym przypadku zdanie A okazuje się fałszywe.
|
|
|